

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2019
Lab 03 – Simple Decisions

Assignment: Lab 03 – Simple Decisions
Due Date: During discussion, February 11th through February 14th
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

In Lab 2, you did some basic programming and learned how to find and fix
errors in Python code. This week’s lab will put into practice some of the
material learned in class, including expressions, user input, Python’s operators,
and simple decision structures.
(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Using Variables and Expressions

Using variables in Python is easy! There are just two important rules we have
to remember:

1. Use meaningful variable names! For example, numberOfBooks is a

much better variable name than NOB or numb or x. Something like

numBooks would also work, if you want to keep it a bit shorter.

2. Before we can use a variable, it must be initialized. In other words, we
have to put a value into the “box” before we can start using the variable.
We do this using the assignment operator, the equals sign (=).

An expression is code that calculates or produces new data and data values.
Expressions are what allow us to create interesting Python programs. The
word “expression” is really just a fancy name for something that can be
evaluated to a single value.

One important thing to remember is that expressions must always be on
the right hand side of the assignment operator!

CMSC 201 – Computer Science I for Majors Page 3

Part 1B: Review – User Input and Casting

User input is a way to get information from the user after you've finished writing
your program. Much like expressions, user input is an important piece in
creating Python programs that do interesting things.

The Python code to get input from the user will look something like this:

userName = input("Enter your name please: ")

When your program is run, this code will print out the message "Enter your

name please: " to the screen. After the user puts in their answer and hits

enter, the text they entered will be stored as the value of userName.

Even if the user enters a number, the value will be automatically stored as a
string. However, we can’t do addition or multiplication with a string. (Python
treats integers and strings very differently!)

We can fix this by telling the program that the input should be stored as an
integer. Doing this is called casting, a process in which Python changes a
variable from one type to another. For example, if we want to convert the
user’s age to an integer, we could write something like this:

userAge = int(input("Enter your age please: "))

If we wanted their GPA (which would be a decimal number, which Python calls
a float) we could write something like this:

userGPA = float(input("Enter your GPA please: "))

CMSC 201 – Computer Science I for Majors Page 4

Part 1C: Review – Comparison Operators

Mastery of logic is essential to understanding conditional statements. It is
used in pretty much any program that you will ever write. Comparisons are
the heart of logical statements. When we write programs, we often want to
compare two pieces of information, testing to see if that comparison evaluates
to True or False.

We can make those comparisons using any of the following comparison
operators, which compare two pieces of information:

 < (less than)

 > (greater than)

 <= (less than or equal to)

 >= (greater than or equal to)

 == (equivalent to)

 != (not equivalent to) also known as “bang equals”

For example:
num = 500 # set the value of num

num < 1000 # this evaluates to True

1456 >= num # this evaluates to True

300 != 3 * 100 # this evaluates to False

"hello" == "goodbye" # this evaluates to False

Notice how you can mix variables and “raw” data (literals) and still make valid
comparisons. Unlike the assignment operator (=), it doesn’t matter on which

side of the comparison operator a variable or expression goes.

CMSC 201 – Computer Science I for Majors Page 5

Part 1D: Review – Logical Operators

You can also combine two or more comparison statements by using:

 and

o Both comparisons must be True for this to evaluate to True

 or

o At least one comparison must be True for this to evaluate to True

For example:
num = 500

(500 <= num) and (num <= 1000) # True

num > 487 or num <= 342 # True

num > 487 and num <= 342 # False

("hello" == "hello") and ("dog" == "cat") # False

"hello" == "hello" or "dog" == "cat" # True

PROTIP:
You do not have to use parentheses around a single comparison statement,
but it can have the benefit of making your code clearer and easier to read.

A third logical operator available to you is called not. This operates on a

single logical statement, “flipping” the truth value of that statement. So, a
logical statement that is True will be flipped to False, and a logical

statement that is False will be flipped to True.

For example:

isDog = True

not isDog # False

"dog" == "cat" # False

not ("dog" == "cat") # True

(4 > 5) # False

not (4 > 5) # True

5 > 4 # True

not (5 > 4) # False

CMSC 201 – Computer Science I for Majors Page 6

Part 1E: Review – Decision Structures

Being able to make comparisons is only the first step. We also need a
structure that can execute different code based on the value of a comparison.
There are three such structures available in Python: “if”, “if-else”, and

“if-elif-else”. These are called decision structures.

A basic “if” statement looks like this:

if age >= 65:

 print("If you are", age, "you are a senior.")

The print() statement is only executed if the value of the variable age is

larger than or equal to 65. Whatever is “inside” the “if” statement (meaning it’s

been indented in) will be executed only if the statement evaluates to True.

What if you want something different to happen if the logical statement is not
True? To do this, just use an “else” statement right after an “if” like so:

if age >= 65:

 print("If you are", age, "you are a senior.")

else:

 print("If you are", age, "you are young.")

What if there are several exclusive logical statements you need to test? Simply
use an “elif” statement combined with an “if.” (The matching “else”

statement is optional, but can be helpful in “catching” the rest of the outcomes.)

if age >= 65:

 print("If you are", age, "you are a senior.")

elif age >= 45:

 print("If you are", age, "you are an adult.")

elif age >= 25:

 print("If you are", age, "you're a young adult.")

else:

 print("If you are", age, "you are young.")

Important: The very first logical statement that evaluates to True will have

its associated code executed, and everything else will be skipped over.
Also, you must have an “if” statement before you use any “elif” statements

or an “else” statement.

CMSC 201 – Computer Science I for Majors Page 7

Part 2: Exercises

In class, we’ve discussed using sequential and decision structures to control
the “flow” of your code. Decision structures like if, elif, and else allow a

Python program to execute a set of statements only if certain conditions are
True (or False).

In this lab, you’ll be creating two files: major.py and dessert.py, both of

which will make use of comparisons and decision structures. Both files will be
counted as part of the grade for Lab 3.

Tasks

 Create a major.py file from scratch

 Run and test your major.py file

 Create a dessert.py file from scratch

 Run and test your dessert.py file

 Show your work to your TA

CMSC 201 – Computer Science I for Majors Page 8

Part 3A: Creating Your Files

First, create the lab03 folder using the mkdir command -- the folder needs

to be inside your Labs folder as well. (If you need a reminder of how to

create and navigate folders, try asking a classmate next to you for help. If
you’re both stuck, ask the TA or refer to the instructions for Lab 1.)

Next, create two Python files (major.py and dessert.py) using the

“touch” command in GL.

The “touch” command creates a new blank file, but doesn’t open it.

Once a file has been “touched”, you can open and edit it using emacs.
 touch major.py

 touch dessert.py

 emacs major.py

The first thing you should do with any new Python file is create and fill out the
comment header block at the top of your file. Here is a template:

File: FILENAME.py

Author: YOUR NAME

Date: TODAY'S DATE

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

CMSC 201 – Computer Science I for Majors Page 9

Part 3B: Passing CMSC 201 (major.py)

This is the first of two programs that must be written for this lab.
This first program uses a simple if-else block, and compares strings for

equivalence. First, the program asks the user what their major is. If the input
is “CMSC” or “CMPE” exactly, it should tell the user that as that major, they’ll
need to earn at least a B. Otherwise, they need at least a C.

Using a single if-else statement, check if the input matches “CMSC” or

“CMPE” (in uppercase).

 If the input is “CMSC” or “CMPE” print:
o You need to earn at least a B for CMSC 201 to count.

 Otherwise, print:
o You need to earn at least a C for CMSC 201 to count.

(Python is case-sensitive, so "CMPE" is not the same as "cmpe" or "CmpE"
when comparing strings.)
Hint: Don’t forget that the Boolean operators "and" and "or" exist!

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python major.py

Please enter your major: CMSC

You need to earn at least a B for CMSC 201 to count.

bash-4.1$ python major.py

Please enter your major: CMPE

You need to earn at least a B for CMSC 201 to count.

bash-4.1$ python major.py

Please enter your major: MATH

You need to earn at least a C for CMSC 201 to count.

bash-4.1$ python major.py

Please enter your major: cmsc

You need to earn at least a C for CMSC 201 to count.

CMSC 201 – Computer Science I for Majors Page 10

Part 3C: Ice Cream and Pie (dessert.py)

This is the second of two programs that must be written for this lab.
This second program requires the use of slightly more complex decision
structures, and is used to offer responses about different desserts.

The program should first ask the user their favorite dessert. If they enter “pie”,
the program should ask their favorite flavor; if they enter “ice cream”, the
program should ask how many scoops they get.

Using decision structures, have your program execute certain print statements
following these rules:

 If they enter that they like pie
o Ask what their favorite flavor is

 If their favorite flavor is not “apple” or “sweet potato”, print
“FLAVOR is a really interesting flavor…”

 Otherwise, print “That is the correct answer!”

 If they enter that they like ice cream
o Ask how many scoops they get

 If they get 3 or more, print “That's quite a lot of ice cream!”
 If they get 1 or 2, print “That's a normal amount of ice cream.”
 If they get 0 or less, print, "Add a few more scoops!”

 If they enter anything else, print “Sounds yummy!”

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 11

Here is some sample output for dessert.py, with the user input in blue.

(Yours does not have to match this word for word, but it should be similar.)

linux2[23]% python3 dessert.py

What is your favorite dessert? ice cream

How many scoops do you usually get? 1

That's a normal amount of ice cream.

linux2[24]% python3 dessert.py

What is your favorite dessert? ice cream

How many scoops do you usually get? -37

Add a few more scoops!

linux2[25]% python3 dessert.py

What is your favorite dessert? ice cream

How many scoops do you usually get? 3

That's quite a lot of ice cream!

linux2[26]% python3 dessert.py

What is your favorite dessert? pie

What is your favorite flavor? chocolate pecan pie

chocolate pecan pie is a really interesting flavor...

linux2[27]% python3 dessert.py

What is your favorite dessert? pie

What is your favorite flavor? sweet potato

That is the correct answer!

linux2[28]% python3 dessert.py

What is your favorite dessert? PIE

Sounds yummy!

linux2[29]% python3 dessert.py

What is your favorite dessert? pie

What is your favorite flavor? Apple

Apple is a really interesting flavor...

CMSC 201 – Computer Science I for Majors Page 12

Part 4: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

Tasks

As a reminder, here are the tasks again:
 Create a major.py file from scratch

 Run and test your major.py file

 If the user enters “CMSC” or “CMPE”, they need a B; otherwise, a C

 Create a dessert.py file from scratch

 Run and test your dessert.py file

 Print out responses based on the user’s favorite type of dessert

 Show your work to your TA

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

